Fast Robust Non-Negative Matrix Factorization for Large-Scale Human Action Data Clustering
نویسندگان
چکیده
Human action recognition is important in improving human life in various aspects. However, the outliers and noise in data often bother the clustering tasks. Therefore, there is a great need for the robust data clustering techniques. Nonnegative matrix factorization (NMF) and Nonnegative Matrix Tri-Factorization (NMTF) methods have been widely researched these years and applied to many data clustering applications. With the presence of outliers, most previous NMF/NMTF models fail to achieve the optimal clustering performance. To address this challenge, in this paper, we propose three new NMF and NMTF models which are robust to outliers. Efficient algorithms are derived, which converge much faster than previous NMF methods and as fast as K-means algorithm, and scalable to large-scale data sets. Experimental results on both synthetic and real world data sets show that our methods outperform other NMF and NMTF methods in most cases, and in the meanwhile, take much less computational time.
منابع مشابه
A Robust Symmetric Nonnegative Matrix Factorization Framework for Clustering Multiple Heterogeneous Microbiome Data
Integration of multi-view datasets which are comprised of heterogeneous sources or different representations is challenging to understand the subtle and complex relationship in data. Such data integration methods attempt to combine efficiently the complementary information of multiple data types to construct a comprehensive view of underlying data. Nonnegative matrix factorization (NMF), an app...
متن کاملFast Nonnegative Matrix Tri-Factorization for Large-Scale Data Co-Clustering
NonnegativeMatrix Factorization (NMF) based coclustering methods have attracted increasing attention in recent years because of their mathematical elegance and encouraging empirical results. However, the algorithms to solve NMF problems usually involve intensive matrix multiplications, which make them computationally inefficient. In this paper, instead of constraining the factor matrices of NMF...
متن کاملFast Clustering and Topic Modeling Based on Rank-2 Nonnegative Matrix Factorization
The importance of unsupervised clustering and topic modeling is well recognized with everincreasing volumes of text data. In this paper, we propose a fast method for hierarchical clustering and topic modeling called HierNMF2. Our method is based on fast Rank-2 nonnegative matrix factorization (NMF) that performs binary clustering and an efficient node splitting rule. Further utilizing the final...
متن کاملA new approach for building recommender system using non negative matrix factorization method
Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...
متن کاملStatistical Traffic State Analysis in Large-scale Transportation Networks Using Locality-Preserving Non-negative Matrix Factorization
Statistical traffic data analysis is a hot topic in traffic management and control. In this field, current research progresses focus on analyzing traffic flows of individual links or local regions in a transportation network. Less attention are paid to the global view of traffic states over the entire network, which is important for modeling large-scale traffic scenes. Our aim is precisely to p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016